Acoustic pressure amplitude thresholds for rectified diffusion in gaseous microbubbles in biological tissue.

نویسندگان

  • P A Lewin
  • L Bjørnø
چکیده

One of the mechanisms often suggested for the biological action of ultrasonic beams irradiating human tissues is concerned with the presence in the tissues of minute gaseous bubbles which may, under the influence of the ultrasonic field be stimulated to grow to a size a which resonance or collapse occurs with severe associated shear stresses. The evidence for the existence of microbubbles in tissues is reviewed. The results of calculations, using two existing theoretical models, of the peak pressure threshold as a function of frequency are presented. The frequency is normalized with the resonant frequency of the bubble, and results are presented for three bubble radii (1, 2, and 3.5 micrometer) and for different values of the gas concentration in the tissue between 0.1 and 1. The results from two models differ suggesting that an improved model and better experimental data for the threshold calculations would be appropriate for further calculations. The thresholds calculated range below the peak pressure amplitudes used in continuous wave diagnostic instruments, indicating the need for a more careful investigation both of this damage mechanism and of the exposures used in routine diagnosis. The results of calculations for typical (transient) exposure conditions from pulse-echo equipment are presented, indicating that rectified diffusion and stable cavitation are improbable phenomena in these circumstances.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Blood Brain Barrier Disruption by Focused Ultrasound and Microbubbles: A Numerical Study on Mechanical Effects

Introduction: Microbubbles are widely used as contrast agent in diagnostic ultrasound. Recently they have shown good potential for applications in the therapeutic field such as drug delivery to the brain. Recent studies have shown focused ultrasound in conjunction with injected micro-bubbles could temporarily disrupt blood-brain barrier and let therapeutic agents transport into...

متن کامل

Investigation of acoustic properties of silica coated gold nanoparticle as contrast agent for Ultrasonography

Interoduction: Ultrasound images have often low contrast due to small differences in acoustic impedance between different tissues. Air or gas microbubbles that surrounded by membrane are most of the contrast agents in ultrasound imaging. Problems such as instability in sound pressure and inability in penetrating from the blood vessel into body tissues limited the use of microbubbles into the in...

متن کامل

Bubble cluster dynamics in an acoustic field.

A mathematical model describing dynamics of the cluster of gas bubbles in an acoustic field is presented. According to this model a cluster is considered as a large drop with microbubbles inside. The proposed model is used as a basis (1) for an analytical study of small bubble oscillations in mono- and polydisperse clusters and (2) for numerical investigations of nonlinear bubble oscillations a...

متن کامل

Determination of postexcitation thresholds for single ultrasound contrast agent microbubbles using double passive cavitation detection.

This work presents experimental responses of single ultrasound contrast agents to short, large amplitude pulses, characterized using double passive cavitation detection. In this technique, two matched, focused receive transducers were aligned orthogonally to capture the acoustic response of a microbubble from within the overlapping confocal region. The microbubbles were categorized according to...

متن کامل

Single Shot Quantification of Gas-Filled Microbubbles with Ultrasound

Gas-filled microbubbles (MBs) are well-established echoenhancers that are wildly used as diagnostic tool in various medical fields. Above a certain sound pressure level, MBs burst and emit a strong signal called ”stimulated acoustic emission” (SAE), which can be detected through ultrasound imaging. Since the amplitude of the SAE signal is high enough to distinguish individual MBs within a given...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of the Acoustical Society of America

دوره 69 3  شماره 

صفحات  -

تاریخ انتشار 1981